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Abstract: In this paper, we apply an extended Riccati sub-equation method to establish new exact
solutions for two nonlinear lattice equations. As a result, new traveling wave solutions including hyperbolic
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of them are generalizations of some known results in the literature obtained by the (G’/G)-expansion
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1 Introduction

Nonlinear lattice equations can find their appli-
cations in many aspects of mathematical physics
such as condensed matter physics, biophysics,
atomic chains, molecular crystals and quantum
physics and so on. Since the work of Fermi, Pasta
and Ulam in the 1960s [1], nonlinear lattice equa-
tions have been the focus of many nonlinear stud-
ies, and much attention have been paid to the re-
search of the theory of nonlinear lattice equations
during the last decades (for example, see [2-10]
and the references therein). Among these research
works, the investigation of exact solutions of non-
linear lattice equations plays an important role in
the study of nonlinear physical phenomena. As we
all know, it is hard to generalize one method for
nonlinear differential equations to solve nonlinear
lattice equations due to the difficulty to search
for iterative relations from indices n to n+1. Re-
cently, the extensions of some effective methods
have been presented and applied for solving some
nonlinear lattice equations successfully in the lit-
erature. For example, these methods include the
exp-function method [11], the exponential func-
tion rational expansion method [12-13], the Jacobi
elliptic function method [14-15], Hirota’s bilin-
ear method [16], the extended simplest equation
method [17], the tanh function method [18] and
so on. In [19-21], Zayed et al. established abun-
dant exact solutions for some nonlinear partial

E-ISSN: 2224-2880

1085

differential equations using the (G’/G)-expansion
method. But we notice that the obtained results
by Zayed are not related to nonlinear lattice equa-
tions. In fact, relatively few results on the appli-
cation of the (G'/G)-expansion method to nonlin-
ear lattice equations have been obtained so far in
the literature [22-25].

In this paper, the Riccati sub-equation
method is extended for solving nonlinear lattice
equations, which can be regarded as a general-
ization of the (G’/G)-expansion method, and in
which the iterative relations from indices n to n41
are established. We are concerned of two lat-
tice equations: the two-component Volterra lat-
tice equations [23]

and the following lattice equation [24]

in(t) = (@ + Bun +yup) (un—1 = tnt1),  (2)
where u,, = up(t), v, = vy(t), n € Z.

When o = 1, Eq. (2) becomes the known Hy-
brid lattice equation [23, 26]. When 8 =0, v =1,
Eq. (2) becomes the known m-KdV lattice equa-
tion [23]. When o = =0, v = —1, Eq. (2) be-
comes the modified Volterra lattice equation [27].

We organize this paper as follows. In Section
2, we give the description of the extended Riccati
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sub-equation method. Then in Section 3 we apply
the method to solve Egs. (1) and (2). Compar-
isons between the present method and the known
(G'/G)-expansion method are also made. Some
Conclusions are presented at the end of the pa-
per.

2 Description of the extended
Riccati sub-equation method

The main steps of the extended Riccati sub-
equation method for solving nonlinear lattice
equations are summarized as follows:

Step 1. Consider a system of M polynomial
nonlinear lattice equations in the form

Pt gy (), oy Uy () ooy Uy (),

Up, 4, (2), ...,uf;)_pl (z), ...,ug"_ipk (x))=0, (3)

where the dependent variable u has M compo-
nents u;, the continuous variable x has N com-
ponents x;, the discrete variable n has ¢ compo-
nents n;, the k shift vectors ps € Z? has Q com-
ponents ps;, and u(") () denotes the collection of
mixed derivative terms of order r.

Step 2. Using a wave transformation

Z d; ”Z+Z c;jz;+C,

where d;, c¢j, ¢ are all constants, we can rewrite
Eq. (3) as the following nonlinear form:

P(Un-l-pl (gn)a cee Un+Pk (gn)v . n+p1 (gn)

ner;c (gn) n+p1 (gn) n—l—pk (én)) - (4)

Step 3. Suppose the solutions of Eq. (4) can
be denoted by

Untp, () = Untp, (§n),

l
D=3 (&), (5)
i=0

where a; are constants to be determined later, [ is
a positive integer that can be determined by bal-
ancing the highest order linear term with the non-
linear terms in Eq. (4), ¢(&,) satisfies the known
Riccati equation:

¢/(§n) =0+ ¢2(§n) (6)

Step 4. We present some special solutions
qbl, ...,¢6 for Eq. (6)
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When o < 0,

$1(&n) = —V/—0 tanh(v/=0&, + co),

¢2(£n) = —\—0 COth( V _O-gn + CO)v
Q
#1,2(én)—+/—0o tanh(v/—o Z dipsi)

b1,2(Entp.) =

$1.2(€n) ’

=

1— tan h(\/TO' Z dzp%)

(7)

where ¢g is an arbitrary constant.

When o > 0,

¢3 (fn) =
¢4 (gn) =

VG tan(y/a, + ¢o),

G cot(y/aEn + co),
65,4(6n) 47 tan(y/7 § dipss)

#3,4(én)
Ve

#3,4(Entps) =

)

1— tan(y/o Z dipsi)

\

and

m S
¢ (fn)'ﬁ‘\/gtan(?\/g E dipSi)

ot (en)
1——=— tan(?dezpm)

?5(Entps) =

¢ () sec(2y/a 2 dipsi)

stV (en) (27 Z )’
177 tan(2+y/o d;ipsi
Ve i=1

(9)
where 6 (6,) = /o tan(2v/56, + o), 65 (6n) =
Vo |sec(24/0&, + o), and ¢p is an arbitrary con-
stant.

When o =0,

1
Entco’

o (gn) = -
$6(én)

$6(Entp,) = —5—

3 (10)
1-¢6 (gn) ; dipsi

where cg is an arbitrary constant.

Step 5. Substituting (5) into Eq. (4), by use
of Egs. (6)-(10), the left hand side of Eq. (4) can
be converted into a polynomial in ¢(§,,). Equating
each coefficient of ¢(&,) to zero, yields a set of
algebraic equations. Solving these equations, we
can obtain the values of a;,d;, c;.

Step 6. Substituting the values of a; into (5),
and combining with the various solutions of Eq.
(6), we can obtain a variety of exact solutions for

Eq. (3).
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3 Application of the extended
Riccati sub-equation method

In this section, we will apply the extended Riccati
sub-equation method described in Section 2 to
two nonlinear lattice equations. First we consider
the two-component Volterra lattice equations de-
noted by Egs. (1).
Using a wave transformation
Un = Un(gn)a Un = Vn(gn)v &n = din+c1t + ¢,
(11)
where dj, c¢1, ¢ are all constants, the system (1)
can be rewritten as the following form:
{ 01U7/7, - Un(v'n, - Vn—1)7 (12)
Cl‘/;; = Vn(Un—i—l - Un)y

Suppose the solutions for (12) can be denoted by

I
(&n) = > @i (&), (13)
=0
la
= Z bzﬁbl(‘fn)a (14)
=0

where ¢(&,,) satisfies Eq. (6). Balancing the order
of U}, and U, V,, in Eq. (13), the order of V,, and
ViU, in Eq. (14), we obtain i} = I3 = 1. So we
have

(15)

(16)

Un(fn) =ao + al(b(fn)-
Vn(gn) =bo + b1¢(§n)

We will proceed to solve Egs. (12) in several cases.
Case 1: If 0 < 0, and assume (6) and (7) hold,
then substituting (15), (16), (6) and (7) into Egs.
(12), collecting the coefficients of ¢f o(£,) and
equating them to zero, we obtain a series of al-
gebra equations:

—cyay tanh(y/—ady) + tanh(v/—ody)bra; = 0,
—cra1y/—o + tanh(v/—ody )brag = 0,
—ciaj0 tanh(v/—ody) + tanh(y/—od;)brayo = 0,
clal(—a)% + tanh(y/—ody)brago = 0,
c1by tanh(v/—ody) + tanh(v/—ody)bra; = 0,
—c1b1v/—0 + aj tanh(v/—ody )by = 0,
c1bio tanh(v/—ody) + tanh(y/—ody)biaio = 0,
clbl(—a)% + ay tanh(v/—ady )boo = 0.
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Solving these equations, yields

a1 = —c1,a9 = av—o =c
1= 1,40 — — tanh(\/jo_dl) 1_ 1
Cil\v/ — 0O
b= —— V77 g =d —
0 tanh(ﬁdl)’ 1 1, C1 C1,
or
= ap tanh(y/—ody) " —a
1 — \/_70_ , 40 — W0,
ap tanh(y/—ody)
blz_ 7b0:a07
V=0
h(~/—
Cl:_aotan (v/ adl), iy — d.
V=0

So we obtain the following four groups of solitary
wave solutions:

Up(t) = c1/—o tanh[/—o(din + c1t + ¢) + ¢
_ay-o
" tanh(y/—ody)’
—c1v/—o tanh[y/—o(din + c1t + ¢) + ¢
_ay-o
" tanh(v/—ody)’

un(t)

(17)

un(t) = c1v/—o coth[y/—o(din + cit + ¢) + o)
_ay—o
" tanh(v/—ody)’
un(t) = —c1v/—0 coth[v/=a (din + 1t + €) + o]
__ay—o
" tanh(v/—ody)’
(18)

un(t) = —ag tanh(y/—od; ) tanh[\/—o(din
—7‘10'3&“\1}%?‘”1)75 + ¢) + co] + ao,
vn(t) = ap tanh(y/—ody ) tanh[/—o(din

_%\/@t +¢) + co] + ao,
(19)

—ag tanh(y/—ody) coth[\/—o(din
—aaniv oot tan\};(_ia:’dl)t +¢) + <o) + ao,
v (t) = ap tanh(y/—ody ) coth[v/—o(din

_%\/j\/ajadl)t + () + co] + ao,
(20)

U (t)

where dy, ¢y, ag are arbitrary constants.

Case 2: If 0 > 0, and assume (6) and (8) hold,
then substituting (15), (16), (6) and (8) into (12),
collecting the coefficients of qﬁéA(ﬁn) and equat-
ing them to zero, we obtain a series of algebra
equations:

c1ay tan(y/ody) — tan(y/ody)bra; = 0,
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cra1y/o — tan(y/od)biag = 0,
crayo tan(y/ody) — tan(y/ody)biaio = 0,
clala% — tan(y/ody )brago = 0,
—c1by tan(v/ody) — tan(v/ody)bra; = 0,
c1biv/o — ay tan(v/ody)by = 0,
—c1byo tan(y/ody) — tan(y/ody )braio = 0,
clblag — a1 tan(y/ody )bgo = 0.

Solving these equations, yields

_ _ o
al - Cl7a0 - tan(fdl) cl?
Cl\/E
0 tan(ﬁdl)’ 1 1, €1 = C1,
or
ag tan(y/ody) ag tan(y/ody)
a) = —————=—, @o = ao, bl = T =
NG NG
t d
bo = ap, C1 = —aoan(\/?;ﬁl), d1 = dl.

So we obtain the following solitary wave solutions:

U () = —c14/@ tan[y/a(din + ert + ¢) + co)
c1v/o
" tan 1fd1)’
vn(t) = c1v/o tan[\/o(din + e1t + ) + <)
_avo
" tan(yv/od1)’
(21)

un(t) = c1y/o cotly/a(din + e1t + ¢) + ¢
_avo
" tan(y/ody)’
va(t) = —e1y/a cot[y/a(din + et + ) + co
_avo
tan(fdl)
(22)
where dy, c1, ag are arbitrary constants, and

un(t) = ap tan(y/ody) tan[y/o(din
—20tatlyoh)t 1 ¢) + co] + ao,
vn(t) = —ap tan(y/ody) tan]y/o(din

— 20 tablyoh)s 4 ¢) + co] + ao,

(23)

un(t) = —ap tan(y/ody) cot[/o(din
—a0tlo )t 4 ¢) + co] + a,
v (t) = ag tan(y/ody ) cot[y/o(din

—o0tanlyOdily 4 ) + co] + a,

(24)
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where dy, cg, ag are arbitrary constants.
Case 3: If 0 > 0, and assume (6) and (9) hold,
then substituting (15), (16), (6) and (9) into (12),

using [0 (6.)]2 = o + [0 (€.)]2, collecting the

coefficients of [d)él)(ﬁn)]i[ g)(fn)]j and equating

them to zero, we obtain a series of algebra equa-
tions:

—2byay sin(2y/ady) + 2c1a; sin(2y/ody) = 0,

—bia1y/o cos(2v/ady) — bragsin(2v/ody)
+2c1a1y/0 cos(2v/ady) + braiy/o = 0,
—2byaq sin(2y/ody) + 2c1a1 sin(2y/ody) = 0
(cray sin(2v/ody) — bray sin(2y/od;))o
—biajosin(2y/ody) + crayosin(2y/ody) = 0,
—biai1y/o cos(2v/ady) — bragsin(2v/ody)
+2c1a1y/0 cos(2v/ady) + braiv/o = 0,
biapy/o—braio sin(2y/ody)—biagy/o cos(2y/ady) = 0,

clala%cos(Z\/Edl)—blaoa sin(2v/ody)+(—bra1v/o
cos(2v/ady)+craiv/o cos(2v/ody)+biay/o)o =0,
—2¢1by sin(2y/ody) — 2byay sin(2y/ody) = 0,
—ay1bg sin(2y/ady) —braj\/o + bia1\/o cos(2y/ady)
+2c¢1b1v/0 cos(2v/ody) = 0,

—2¢1by sin(2y/ody) — 2biay sin(2y/ody) = 0,
(—c1by sin(2y/ody) — biag sin(2y/ody))o
—c1byosin(2y/ody) — biayo sin(2y/ody) = 0,
—ay1bg sin(2y/ody) — bia1\/o +bia;\/o cos(2y/ady)
+2c1b1v/0 cos(2v/ody) = 0,

—bia10 sin(2y/Fd) ) +arboy/T cos(2v/ady ) —arboy/a = 0,

Clblo'% COS(Q\Edl) — alboa sin(2\/5d1) + (blalﬁ
cos(2v/ody)+c1biv/o cos(2v/ady)—brai/o)o = 0.

Solving these equations, we get that

ap = —cy, ag =0, by =c1, bp =0,
T
d = — =
1 2\/57 C1 C1,
or
ay = —c1, ag = by, by = c1, by = by,
1 . QClbO\F
dy = 2\Earcsm( b2+010), c1=cy.
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So we obtain the following trigonometric function
solutions:

un(t) = —clﬁ{tan[Qﬁ(#n + 1t + () + co]
+lsec2vo(57zn + ait +¢) + coll},
vp(t) = clﬁ{tan[%/g(ﬁn + 1t + ¢) + co)
] sec2y/F(575n + et + ) + ol .
(25)
where ¢;, cg are an arbitrary constants, and

+e1t +¢) + ¢
] sec[2/a (5 aresin(~ 25225 )
+e1t + €) + col[} + bo,

0a(t) = e1V/o{tan[2y/o (1 aresin(— 227 )
+e1t +¢) + col
+| sec[2\/5(ﬁ arcsin(—zl)%liio%/f)n
+ert + ¢) + co] |} + bo,

(26)
where c¢q, by, cg are an arbitrary constants.
Case 4: If 0 = 0, and assume (6) and (10)
hold, then substituting (15), (16), (6) and (10)
into (12), collecting the coefficients of ¢§(&,) and
equating them to zero, we obtain a series of alge-
bra equations:

claldl - dlblal == 0,

cia1 — d1b1a0 = 0,
cibidy + dibray =0,
—c1b1 + a1dibg = 0.

Solving these equations, yields
a1 = dibo, ap = by, b1 = —diby,

bo = by, d1 = d1, c1 = —d1bo.

Then we obtain the following rational solutions:

_ —dib
u”(t) - d1n7d1b:)t0+C+00 + bo, (27)
vp(t) = —dibp____ 4y
n din—dibot+(+co 05

where dy, by, cg are an arbitrary constants.

Remark 1 In [23, Egs. (46), (47), (51), (52)],
Ayhan and Bekir presented some exact solutions
for the two-component Volterra lattice equations
by the (G'/G)-expansion method. We note that
our results (17), (18) are generalizations of [23,
Egs. (46), (47)], while (21), (22) are generaliza-
tions of [23, Egs. (51), (52)]. In fact, if we let

_4u—A2

C
co = arctan(i), o 1

Cy
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or

C dp— N2
co = arcoth(al), o= 'MT,
2

then our results (17), (18) reduce to [23, Eq. (46),
(47)]. If we let

t ( 02) 4,[1,—)\2
co = arctan(——-), 0 = ————
0 ) 4
or
C 4y — N2
co :arcot(—é), o= M4 )

then our results (21), (22) reduce to [23, Eq. (51),
(52)].
Remark 2 The established results by (25)-(27)
are new exact solutions for the two-component
Volterra lattice equations so far to our best knowl-
edge.

Next we will apply the extended Riccati sub-

equation method to the lattice equation denoted
by Eq. (2). Using a wave transformation

Up = Un(én)y gn =din+cit+ Ca (28)

where dy, ¢, ¢ are all constants, Eq. (2) can be
rewritten as the following form:

ClU;l — (Ck +6Un +’)/U,3)(Un_1 — Un+1) =0. (29)

Suppose the solutions of Eq. (29) can be denoted
by

l
=0

where ¢(&,) satisfies Eq. (6). Balancing the order
of U/ and U2 in Eq. (29) we obtain [ + 1 = 2l,
and then [ = 1. So we have

Un(§n) = ao + a16(&n). (31)

Then similar as the previous process, we will pro-
ceed to solve Eq. (29) in several cases.

Case 1: If 0 < 0, and assume (6) and (7) hold,
then substituting (31), (6) and (7) into Eq. (29),
collecting the coefficients of th({n) and equat-
ing them to zero, we obtain a series of algebra
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equations:
c1 tanh(y/—ody)? — 2¢/—0vya? tanh(y/—od;) =
—2y/—0faj tanh(y/—ody)

—4\/—0ovyaiap tanh(y/—ody) = 0,

cio tanh(v/—ody)? + c10 — 2v/—oatanh(y/—od;)

—2y/—0Bag tanh(y/—ady) + 2va3(
—2y/—ovya} tanh(y/—od;) = 0,
2Bay(—0)? tanh(y/—ody)
+47a1a0(70')% tanh(y/—od;) =0,

o(—2va3\/—o sinh(y/—ody) — 2Bagy/—0 sinh(y/—ad;)

+c10 cosh(v/—ody) — 2an/—0o sinh(v/—ody)) = 0

Solving these equations, yields

a; = + /4o«y B2 tanh(\/’y—adl)’

ayg = —

—0)2 tanh(v—ad,)

2+
di = dy, o1 = 5227 tanh(y/=ady),
B2 —4ay > 0.

So we obtain the following solitary wave solutions:
un (1) = £/B7 — dory b/ Zoh) o
tanh[\/—a(dln + \/ﬁw tanh(ﬁdl)t +¢) + col
_%7

(32)
and
U (t) B \/ﬁQ—tanh(Fdl)
n 2y
coth[\/—o(din + 2\/ﬁ” tanh(y/—ody)t + ¢) + co]
_B
2y

(33)
where dy, ¢y are arbitrary constants.
Case 2: If 0 > 0, and assume (6) and (8) hold,
then substituting (31), (6) and (8) into Eq. (29),
collecting the coefficients of ¢§74(§n) and equat-
ing them to zero, we obtain a series of algebra
equations:

c1tan(y/ody)? — 2y/atan(y/ady)ya? = 0,
—Qﬁtan(ﬁdl)ﬁal

ciotan(y/od1)? — c10 — 2v/o tan(y/ody)a
—2+/otan(\/ody)Bay — ZU%tcm(ﬁdl)’ya%
—2y/o tan(y/ody)ya3 = 0,

—203 tan(y/ody)Bar — 40%tan(\/5d1)7a1a0 =0,

(2y/o sin(y/ad1)Bag + 2+/7 sin(y/od1)yad
+2/osin(y/odi)a + cio cos(y/ody))o = 0.
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Solving these equations, yields

-+ /B2 — 4a'ytan(\fd1)
o 27y ’

ap = _%)
dy =dy,
4,
c1 = 62f37 tan(ﬁdl),
B2 —4dary > 0.

Then we have the following trigonometric func-
tion solutions:

52 Aoy tanh(fdl)
tanh(fdl)t +¢) + <]

un(t) =

R —ton
%

(34)
and

U/n( ) _ ,82 tanh(\/Edl) %

cot[\f(dln + 527@ tanh(ﬁdl)t +¢) + ¢
_%’
(35)
where dy, cg are arbitrary constants.
Case 3 If 0 > 0, and assume (6) and (9) hold,
then substituting (31), (6) and (9) into Eq. (29),
using [0 (€2))? = o + [60 (€))%, collecting the

coefficients of [(ﬁél)(ﬁn)]i[ 22)(fn)]j and equating
them to zero, we obtain a series of algebra equa-
tions:

2¢1 cos(2y/ady)? — 2¢1 + 4\/Tsin(2y/od;)
va? cos(2y/ady) + 4+/o sin(2y/ad; )ya? = 0,

4 /osin(2\/ody)yaiag cos(2v/ody)
+4y/o sin(2y/ody )yarag + 2+/0 sin(2y/ady) Bay
+2\/osin(2\/od1)Bay cos(2v/od1) = 0,

2c1 cos(2y/ady)? — 2¢;
+4/0 sin(2\/ody)ya? cos(2\/od)
+44/0 sin(2y/ody)ya? = 0,

3c10 cos(2y/ady)? + 24/o sin(2v/ady) Bag cos(2+/ady)
—c10 + 2+/0 sin(2y/ady )yad cos(2\/od;

+24/0 sin(2v/od;)a cos(2y/od)

+403 sin(2v/ady)ya? cos(2y/ad)

+(4+/o sin(2y/ady)ya? — c1 + c1 cos(2y/ody)?

+24/0 sin(2+/od)ya? cos(2y/od1))o = 0,

4./0 sin(2/ody)yaiag cos(2v/ady)

+4./0 sin(2/od1)yaiag

+2\/Esin(2ﬁd1)ﬁa1

+2\/osin(2/ody)Ba; cos(2\/ody) =
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do3 sin(2y/ody)yajag cos(24/ody)
+(2/o sin(2y/od1)Bar + 4y/o sin(2y/od1)yara0)o
+202 sin(2+y/ody)Bay cos(24/ady) = 0,

202 sin(2+/ady)Bai cos(2y/ad;)
+402 sin(2+v/ody )yaiag cos(2v/ody) =

203 sin(2y/ady )yadcos(2y/ady) + 102 cos(2/ady)?
4202 sin(2y/ody)Bag cos(2y/ody)

1202 sin(2y/ad; o cos(2v/ady )

+(2a% sin(2y/ady )ya? cos(2y/ad)

+c10 cos(2y/ad1)?)o = 0.

Solving these equations, yields

a; = ala ag = _%7
d s
1= 4\/57
c1 = £2/oya?,
B% — 4oy >0,
or
o B2—4avy 1
ayp = o 27
apg = _%7
dl = 4\7}7
BZ—doy p2 _
=+ NG , 8% —4day >0,
or
24
a; = — 8 a'y%}
ag = _%7
dl = 4\7}7
B2 —4day 2 _
==+ N 5% —4ay > 0,
or
ap = aq,
ap = _%a

= :l:(ll V B2 - 40"77

,82+4o¢'y+40'y2a%
d1 2f arccos(—4072a%_62+4m),
B% — 4ary > 0.

So we obtain the following four groups of trigono-
metric function solutions:

un(t) = al{
tan[2y/o(+ et 2v/ova3t + ¢) + co)
+ sec[?f( Mn +2y/0va}t +¢) + ll} - &,
(36)
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un (1) = VI
tan[2y/o (£ 7-n £ @f‘yt +¢) + col
+\sec[2f( n:l: ”82\/%:%4—()4‘00“} 277
(37)
up(t) = — \/574047{
tan[2y/F (4o + 2 3y 1O Fal
+]sec[2y/0 (%5 n:I:’BQ\/Ath+C)+COH} 27’
(38)
un(t) = a1{ 5 2 2
a1/B% = doy) + o] (39)

52 2 2
+\sec[2f(#arccos(%m)

a1/ 8% —davyt + ) + co]|} —

where a1, ¢g are arbitrary constants, and a; # 0.
Case 4 If 0 =0, and assume (6) and (10) hold,
then substituting (31), (6) and (10) into Eq. (29),
collecting the coefficients of ¢'(¢,) and equating
them to zero, we obtain a series of algebra equa-
tions:

27’

c1d? — 2dyya? = 0,
—4dyyayag — 2d1Bay = 0,
—C1 — 2d104 — 2d1’ya% — 2d1,3a0 =0.

Solving these equations, yields

v/ B2 — davyd
al:iw an — ﬁ dy = dj,

27 , 40 — — 2/}/7
2 —dary)d
c1 :M’ 32 — dary > 0.
2y
Then we obtain the following rational solution:
1 _ s (40)
dyn+t B 4m)d1 t+CHeo v’

whered;, cg are arbitrary constants.

Remark 3 . In [24, Egs. (34), (37)], Zhang et
al. presented some exact solutions for Eq. (2) by
the (G’/G)-expansion method. We note that our

Issue 12, Volume 11, December 2012



WSEAS TRANSACTIONS on MATHEMATICS

results (32), (34) are generalizations of Zhang’s
results. In fact, if we let

C: 4p — N2
co = arctan(é), o="" 1
or )
C dp — A
co = arcoth(é), o= #Tv

then our result (32) reduces to [24, Eq. (34)]. If
we let

" ( 02) 4#—/\2
Co = arctan\ —— g = ——
0 c, 4
or
t( Cl) 4M—)\2
co = arccot(——-), 0 =
0 CQ ) 4 ;

then our result (34) reduces to [24, Eq. (37)].

Remark 4 To our best knowledge, The estab-
lished results by (36-40) are new exact solutions
for the two-component Volterra lattice equations,
and have not been reported by other authors.

Remark 5 From the analysis above, we no-
tice that more general exact solutions for the two
lattice equations mentioned above are obtained
by the proposed extended Riccati sub-equation
method than by the (G'/G)-expansion method.
In fact, in the (G'/G)-expansion method, the
solutions U, (§,) is denoted by a polynomial in
(G'(&)/G(&n)), and G satisfies

G"+ )G + pG =0, (41)

where A, p are constants. If we let in Eq. (41)

(G'(&) /G (&) = —o(&n) — %, 4“2)‘ = o, then
Eq. (41) reduces to ¢/(£,) = o + ¢*(&,), which is
the Riccati equation (6). So (G'(&,)/G(&,)) can
be generalized by ¢(&p).

Remark 6 All of the solutions presented in
this paper have been checked with Maple 11 by
putting them back into the original equations.

4 Conclusions

We have proposed an extended Riccati sub-ODE
method for solving nonlinear lattice equations,
and applied it to find exact solutions of two non-
linear lattice equations. As a result, some gen-
eralized exact solutions and solitary wave solu-
tions for them have been successfully found. We
have also compared this method with the known
(G’/G)-expansion method. Comparison results

E-ISSN: 2224-2880
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show that more exact solutions are obtained
by the proposed method than by the (G’/G)-
expansion method, which is to some extent in ac-
cordance with the analysis in [28].
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